Наследование групп крови в системе mn
Наследование групп крови типа M, N и MN
Задача 94.
Группы крови по системе антигенов М и N (М, MN,N) детерминируются кодоминантными генами LN и LM. Частота встречаемости гена LM у белого населения США составляет 54%, у индейцев — 78%, у эскимосов Гренландии — 91%, у австралийских аборигенов — 18%. Определите частоту встречаемости группы крови MN в каждой из этих популяций.
Решение:
LM – аллель гена, обуславливающего наличие в эритроцитах человека антигена М (группа крови М);
LN – аллель гена, обуславливающего наличие в эритроцитах человека антигена N (группа крови N);
LMLM – гомозигота – группа крови типа М;
LNLN – гомозигота – группа крови типа N;
LMLN – гетерозигота – группа крови типа МN;
р 2 (LMLM) – частота встречаемости группы крови типа М;
2рq(LMLN) – частота встречаемости группы крови типа МN;
q 2 (LNLN) – частота встречаемости группы крови типа N.
1. Определим частоту встречаемости группы крови типа MN у белого населения США.
Учитывая, что частота встречаемости гена LM у белого населения США составляет 54% или 0,54, рассчитаем частоту встречаемости гена LN в данной популяции, получим:
р + q = 1, р = 1 – q = 1 – 0,54 = 0,46.
Теперь можно рассчитать частоту встречаемости группы крови типа MN у белого населения США, получим:
2рq(LMLN) = 2 . 0,54 . 0,46 = 0,4968 или 49,68%.
Таким образом, каждый второй белый житель США имеет группу крови типа MN.
2. Определим частоту встречаемости группы крови типа MN у индейцев.
Учитывая, что частота встречаемости гена LM у индейцев составляет 78% или 0,78, рассчитаем частоту встречаемости гена LN в данной популяции, получим:
р + q = 1, р = 1 – q = 1 – 0,78 = 0,22.
Теперь можно рассчитать частоту встречаемости группы крови типа MN у индейцев, получим:
2рq(LMLN) = 2 . 0,78 . 0,22 = 0,3432 или 34,32%.
Таким образом, 34,32% индейцев имеют группу крови типа MN.
3. Определим частоту встречаемости группы крови типа MN у эскимосов Гренландии
С учетом того, что частота встречаемости гена LM у у эскимосов Гренландии составляет 91% или 0,91, рассчитаем частоту встречаемости гена LN в данной популяции, получим:
р + q = 1, р = 1 – q = 1 – 0,91 = 0,09.
Теперь можно рассчитать частоту встречаемости группы крови типа MN у индейцев, получим:
2рq(LMLN) = 2 . 0,91 . 0,09 = 0,1638 или 16,38%.
Таким образом, 16,38% эскимосов Гренландии имеют группу крови типа MN.
4. Определим частоту встречаемости группы крови типа MN у австралийских аборигенов
С учетом того, что частота встречаемости гена LM у австралийских аборигенов составляет 18% или 0,18, рассчитаем частоту встречаемости гена LN в данной популяции, получим:
р + q = 1, р = 1 – q = 1 – 0,18 = 0,82.
Теперь можно рассчитать частоту встречаемости группы крови типа MN у австралийских аборигенов, получим:
2рq(LMLN) = 2 . 0,18 . 0,82 = 0,2952 или 29,52%.
Таким образом, 29,52% австралийских аборигенов имеют группу крови типа MN.
Задача 95.
При обследовании населения южной Польши обнаружено лиц с группами крови: М — 11163, MN — 15267, N — 5134. Определите частоту генов LN и LM среди населения южной Польши.
Решение:
LM – аллель гена, обуславливающего наличие в эритроцитах человека антигена М (группа крови М);
LN – аллель гена, обуславливающего наличие в эритроцитах человека антигена N (группа крови N);
LMLM – гомозигота – группа крови типа М;
LNLN – гомозигота – группа крови типа N;
LMLN – гетерозигота – группа крови типа МN;
р 2 (LMLM) – частота встречаемости группы крови типа М;
2рq(LMLN) – частота встречаемости группы крови типа МN;
q 2 (LNLN) – частота встречаемости группы крови типа N.
1. Определим общее количество обследованных людей южной Польши на признак типа крови по системе MN, получим:
n = 11163 + 15267 + 5134 = 31564
2. Определим частоту гена LN среди населения южной Польши, получим:
q 2 (LNLN) = 5134/31564 = 0,16265, q = 0,4.
3. Определим частоту гена LM среди населения южной Польши, получим:
р + q = 1, р = 1 – q = 1 – 0,4 = 0,6.
Ответ: р = 0,6; q = 0,4.
Таким образом, частота генов LN и LM среди населения южной Польши составляет соответсвенно 0,4 и 0,6.
Задача 96.
Частота людей с группой крови NN в популяции составляет 18%. Найти процентное соотношение групп крови MM, MN и частоту аллелей М и N в данной популяции людей.
Решение:
LM – аллель гена, обуславливающего наличие в эритроцитах человека антигена М (группа крови М);
LN – аллель гена, обуславливающего наличие в эритроцитах человека антигена N (группа крови N);
LMLM – гомозигота – группа крови типа М;
LNLN – гомозигота – группа крови типа N;
LMLN – гетерозигота – группа крови типа МN;
р 2 (LMLM) – частота встречаемости группы крови типа М;
2рq(LMLN) – частота встречаемости группы крови типа МN;
q 2 (LNLN) – частота встречаемости группы крови типа N.
Учитывая, что частота гомозигот (LNLN) составляет 18% (0,18), найдем частоту аллеля LN в популяции:
q 2 (LNLN) = 0,18, q(LN) = 0,42426.
Тогда частота аллеля М составит:
p + q = 1, p(LM) = 1 – q = 1 – 0,424246 = 0,57574.
Определим процентное соотношение групп крови типа MM:
р 2 (LMLM) = (0,57574)2 = 0,33147 или 33,147%.
Определим процентное соотношение групп крови типа MN:
2рq(LMLN) = 2 . 0,57574 . 0,424246 = 0,48853 или 48,853%.
Ответ: q(LN) = 0,42426; p(LM) = 0,57574; р 2 (LMLM) = 33,147%; 2рq(LMLN) = 48,853%.
Источник: buzani.ru
Наследование групп крови человека по системам MN и Rh
Наиболее простым примером кодоминантного взаимодействия аллелей у человека является система групп крови MN и Rh.
Группы крови системы MN.В этой системе существует три группы M, N и MN. У родителей с одинаковой группой крови M или N рождаются дети, с таким же фенотипом, как и у родителей. Это значит, что обладатели группы крови M или N могут быть только гомозиготами MM или NN соответственно. Дети с группой MN появляются тогда, когда один из родителей имеет группу крови M, а другой N. В этом случае оба аллеля функционируют вместе, и это проявляется в формировании особого фенотипа MN. Как видно, оба гена кодоминантны.
Группы крови системы Rh. Другая система групповых антигенов, названная системой резус-фактора (Rh), находится под более сложным генетическим контролем. Эта система включает три пары антигенов (D, C/c, E/e), кодируемые двумя тесно сцепленными высоко гомологичными генами, локализованными в коротком плече хромосомы 1 – RHD и RHCE. По-видимому, эти два гена произошли в процессе эволюции в результате дупликации от общего предкового гена. Основная роль в Rh-системе принадлежит антигену D, продукту гена RHD. При его наличии на поверхности эритроцитов кровь является резус-положительной. Антигены C/c и E/e кодируются геном RHCE, и они образуются в результате альтернативногосплайсинга. Резус-отрицательный фенотип формируется при отсутствии антигена D, возникающем при делеции гена RHD.От 0,2% до 1% людей имеют особый «слабый» вариант антигена D, обозначаемый D u . Причиной появления этого фенотипа являются мутации в гене RHD. Носители D u -фенотипа также являются резус-отрицательными и им можно переливать только резус-отрицательную кровь.
Ни группа крови, ни резус-фактор в течение жизни не изменяются, их наследование никак между собой не связано, и подсчеты вероятности производятся отдельно.
4. Влияние факторов среды на реализацию генотипа в фенотип: качественная и количественная специфика проявления генов в признаке (экспрессивность и пенетрантность)
В генетической информации заложена способность развития определенных свойств и признаков. Любой признак в организме является следствием сложных взаимодействий между генами в генотипе и условиями среды. Одна и та же наследственная информация в измененных условиях может проявляться по-разному. Диапазон изменчивости, в пределах, которой в зависимости от условий среды один и тот же генотип способен давать различные фенотипы, называется нормой реакции.
В ряде случаев у гена, в зависимости от всего генотипа и внешних условий, возможна различная полнота фенотипического проявления – от полного отсутствия контролируемого геном признака до полной его выраженности. Степень фенотипического проявления признака в зависимости от взаимодействия гена с генотипической средой и условиями среды, называется экспрессивностью. Следовательно, экспрессивность отражает качественное проявление гена в признаке и связана с изменчивостью признака в пределах нормы реакции. Экспрессивность может выражаться в изменении морфологических признаков, биохимических, иммунологических, патологических и других. Например, содержание хлора в поте человека составляет 40 ммоль/л, при наследственной болезни муковисцедозе колеблется от 40 до 150 ммоль/л. Наследственное заболевание фенилкетонурия (нарушение аминокислотного обмена) проявляется от легкой степени умственной отсталости до глубокой имбецильности.
В процессе онтогенеза не все гены реализуются в признак. Некоторые из них оказываются блокированными другими неаллельными генами, или проявлению признаков препятствуют неблагоприятные внешние условия. Пробиваемость гена в признак называется пенетрантностью. Пенетрантность выражается в процентах и показывает число особей, несущих признак, к общему числу носителей гена, т.е. это количественный показатель. Если мутантный ген проявляется у всех особей, пенетрантность полная и равна 100% . В остальных случаях о неполной пенетрантности указывает процент особей, проявляющих ген. Например, наследуемость групп крови у человека имеет 100% пенетрантность, эпилепсия – 67%, сахарный диабет – 65%, врожденный вывих бедра – 20%.
Термины «экспрессивность» и «пенетрантность» введены в 1927 году Н.В. Тимофеевым-Ресовским. Обе закономерности необходимо иметь в виду при изучении наследственности у человека. Так как один и тот же генотип может явиться источником развития различных фенотипов, имеет существенное значение для медицины. Это означает, что отягощенная наследственность не обязательно должна проявиться. В ряде случаев болезнь как фенотипическое проявление наследственной информации можно предотвратить соблюдением диеты (сахарный диабет, фенилкетонурия и др.) или приемом лекарственных препаратов.
И экспрессивность, и пенетрантность поддерживаются естественным отбором, т.е. гены, контролирующие патологические признаки могут иметь разную экспрессивность и пенетрантность: заболевают не все носители гена, а у заболевших степень проявления будет различна. Проявление или неполное проявление признака, а так же его отсутствие зависит от среды и от модифицирующего действия других генов.
ВЫВОД
Однозначного соответствия между генотипом и фенотипом нет, так как изменения генотипа не всегда сопровождаются изменением фенотипа, а изменения фенотипа не всегда обусловлены изменениями генотипа. В фенотипе реализуются многие генотипические возможности организма, но не все. Поэтому фенотип(как внешнее проявление генотипа)обычно является частным случаем проявления генотипа в данных конкретных условиях среды. Хотя характер проявления фенотипа всегда обусловлен генотипом.
Обычно генотип определяет пределы (размах) генетических возможностей, свойственных конкретному виду, а фенотип реализует эти возможности в признаках.
Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче.
1. Заяц Р.Г., Рачковская И.В. Основы общей и медицинской генетики: Учебное пособие. – Мн.:Выш. Шк., 1998
2. В.Э. Бутвиловский, В.В. Давыдов, Р.Г. Заяц. Биология. Мн.: БГМУ, 2013
3. Фогел Ф., Мотульски А. Генетика человека. М.: Наука, 1990. Т.1-3
4. Ярыгин В.Н., Васильева В.И. и др. Биология. М.: Высшая школа, 2001. Т. 1-2
Источник: lektsii.org
Наследование групп крови по системам: ABO, MN и Rh-фактор. Резус-конфликт.
Система АВ0. Группы крови системы АВ0 («а», «б», «ноль») контролируются одним аутосомным геном I или ABO, расположенным в длинном плече хромосомы 9. В этом гене идентифицировано 3 аллеля I A , I B и I 0 . Аллели I A и I B кодоминантны по отношению друг к другу, и оба они доминантны по отношению к аллелю I 0 . Таким образом, при сочетании различных аллелей могут образовываться 4 группы крови: 0 или I при генотипе I 0 I 0 , A или II при генотипах I A I A и I A I 0 , B или III при генотипах I B I B и I B I 0 и AB или IV при генотипе I A I B в соотношении 1:3:3:2.
Группы крови определяют иммунологические свойства антигена агглютиногена, локализованного на поверхности эритроцитов, и взаимодействующего с ними антитела агглютинина, растворенного в сыворотке крови.
При самой редкой группе крови 0(I), которая в популяции встречается с частотой 11% (1:9), в сыворотке крови вырабатываются антитела против антигенов А и В. Если человеку с группой крови 0(I) добавить кровь любой другой группы произойдет агглютинация (слипание) эритроцитов и разовьется гемолитический шок. В тоже время кровь группы 0(I) не содержит эритроцитарных антигенов, и ее можно переливать любым реципиентам вне зависимости от их группы крови. Поэтому люди с группой крови 0(I) являются «универсальными донорами». При группах крови A(II) и B(III), каждая из которых встречается примерно у трети населения, в сыворотке крови присутствуют антитела соответственно либо против антигена В, либо против антигена А. Поэтому людям с этими группами крови можно переливать либо кровь той же самой группы, либо кровь группы 0(I). При четвертой группе крови AB(IV) антитела против эритроцитарных антигенов в сыворотке крови не вырабатываются. Этим людям можно переливать кровь любой группы, таким образом, они являются «универсальными реципиентами». Однако их кровь можно переливать людям только с той же самой четвертой группой крови AB(IV).
Группы крови системы MN. Первый случай кодоминантного взаимодействия аллелей у человека был описан для групп крови системы MN. В этой системе существует три группы M, N и MN. В ходе обширного исследования было показано, что у родителей с одинаковой группой крови M или N рождаются дети, с таким же фенотипом, как и у родителей. Это значит, что обладатели группы крови M или N могут быть только гомозиготами MM или NN соответственно. Дети с группой MN появляются тогда, когда один из родителей имеет группу крови M, а другой N. В этом случае оба аллеля функционируют вместе, и это проявляется в формировании особого фенотипа MN.
Группы крови системы Rh. Эта система включает три пары антигенов (D, C/c, E/e), кодируемые двумя тесно сцепленными высоко гомологичными генами, локализованными в коротком плече хромосомы 1. Основная роль в Rh-системе принадлежит антигену D. При его наличии на поверхности эритроцитов кровь является резус-положительной. Антигены C/c и E/e они образуются в результате альтернативного сплайсинга. Резус-отрицательный фенотип формируется при отсутствии антигена D.
Знание групповой принадлежности по Rh-системе имеет огромное значение для предотвращения резус-конфликта между матерью и плодом, который может возникнуть во время беременности. Частота людей с резус-положительной принадлежностью – Rh(+), составляет 85%, остальные 15% являются резус-отрицательными – Rh(-). Если у резус-отрицательной женщины муж имеет резус-положительную принадлежность, то с высокой вероятностью ребенок окажется резус-положительный, и тогда может возникнуть резус-конфликт между плодом и матерью. В 15% подобных случаев после 7 недели, когда в крови плода появляются зрелые эритроциты, в крови беременных с Rh(-) могут начать вырабатываться специфические противорезусные антитела. Через плаценту они попадают в кровь плода и в отдельных случаях могут там накапливаться в большом количестве, вызывая агглютинацию эритроцитов и их разрушение. Как правило, первая беременность заканчивается благополучно, мертворождения и выкидыши встречаются редко. Особенно велика вероятность возникновения резус-конфликта при повторных беременностях Rh(-)-женщины. Следствием этого процесса может быть разрушение красных кровяных телец плода и формирование у него гемолитической болезни, проявляющейся анемией, желтухой, отеками и обусловливающей сложные интеллектуальные дефекты, нарушения слуха и речи, двигательные расстройства. Нередко у новорожденных с гемолитической болезнью, вызванной резус-конфликтом, развивается тяжелый детский церебральный паралич с эпилептической болезнью и значительным отставанием психического развития.
Для профилактики резус-конфликта и гемолитической болезни у плода женщине с отрицательной резус-принадлежностью при любом внутриматочном вмешательстве во время первой беременности (медицинский аборт, самопроизвольный выкидыш с последующим выскабливанием, роды) показано введение анти-Д-иммуноглобулина. Этот препарат снижает резус-сенсибилизацию беременной, то есть её чувствительность к резус-фактору и соответственно формированию резусных антител. Введение анти-Д-иммуноглобулина при повторных беременностях не показано, так как женщина уже сенсибилизирована, то есть чувствительна к резус-фактору, и имеет резусные антитела. Женщина с Rh(-) непременно должна обсудить с врачом-генетиком проблемы профилактики рождения ребенка с последствиями билирубиновой энцефалопатии в виде тяжелого детского церебрального паралича.
В редких случаях конфликт возникает и по АВ0 системе, но протекает он в значительно более легкой форме, чем при резус-конфликте.
35. Геном. Генотип. Геномные мутации и их классификация. Возможные механизмы возникновения и последствия геномных мутаций. Примеры у человека. Генотип как сбалансированная система.
Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.
Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме.
Генотип – это объединение геномов двух родительских особей в процессе оплодотворения при половом размножении.
Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. Таким образом, генотип — это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе.
Геномные мутации – это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом . Разные виды геномных мутаций называют гетероплоидией и полиплоидией.
Геномные мутации связаны с изменением числа хромосом.
Классификация:
1. Гаплоидия – уменьшение числа хромосом вдвое. Гаплоидный набор хромосом содержится в норме только в половых клетках. Естественная гаплоидия встречается у низших грибов, бактерий, одноклеточных водорослей. У некоторых видов членистоногих гаплоидными являются самцы. Развитие ктр. идет из неоплодотворенных яйцеклеток. Гаплоидные организмы мельче, у них проявляются рецессивные гены, они бесплодны.
2. Полиплоидия – увеличение числа хромосом, кратное гаплоидному набору в клетке. Сейчас это овес, пшеница, рис, свекла, картофель и т.д. среди животных – у гермафродитов(земляные черви), у нектр. насекомых, ракообразных, рыб.
Может возникнуть в результате:
Нарушения расхождения хромосом при митозе.
Слияния клеток соматических тканей либо их ядер.
Нарушений мейоза, приводящих к образованию гамет с нередуцированным числом хромосом.
3. Анеуплоидия – изменение числа хромосом в клетках организма за счет потери (моносомия) или добавления (полисомия) отдельных хромосом.
Механизм анеуплоидии связан с нарушением расхождения хромосом при мейозе.
Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе (анафаза- и анафаза-II), в результате чего образуются аномальные гаметы (по количеству хромосом), после оплодотворения которых возникают гетероплоидные зиготы.
Болезни:
1. Синдром трисомии по Х – хромосоме ХХХ.
2. Синдром Клайнтфельтера.
3. Синдром Шершевского – Тернера.
4. Синдром Дауна (трисомия по 21-хромосоме).
5. Синдром Патау (трисомия по 13-хромосоме).
6. Синдром Эдвардса (трисомия по 18-хромосоме).
Сбалансированность генотипа определяется тем, что каждый из представленных генов присутствует в нем в строго определенном количестве аллелей _ дозе. Аллель _ это одна из двух или более альтернативных форм (вариантов) гена, каждая из которых характеризуется уникальной последовательностью нуклеотидов. Присутствуя в клетках организма в одном экземпляре, аллель обеспечивает развитие соответствующего признака до определенного количественного предела. Сбалансированное взаимодействие генов обеспечивает нормальное развитие организма. Большинство структурных и регуляторных генов в диплоидной клетке представлено двумя аллелями, располагающимися в идентичных локусах гомологичных хромосом, т.е. их доза равна двум. Они соответствуют фракции ДНК генома с уникальными последовательностями нуклеотидов. Исключение составляют указанные гены, располагающиеся в негомологичных локусах половых хромосом у мужчин. Их доза будет равна единице. Гены кодирующие рРНК, тРНК, гистоны, а также многие другие белки, требующиеся в клетке в большом количестве, представлены большим количеством копий (102 _ 104) и соответствуют фракциям ДНК генома со средним числом повторов. Таким образом, в клетках нормально развивающегося организма количество доз представленных генов зависит от их функционального предназначения.
Дата добавления: 2018-05-12 ; просмотров: 3155 ;
Источник: studopedia.net
Закономерность наследования групп крови
Кровь каждого индивидуума имеет свои свойства и характеристики. Они формируются специфическими протеинами — антигенами, располагающимися на мембране эритроцитов (rbc), и антителами плазмы к ним. Наследование групп крови и резус фактора у человека обеспечивают их пожизненную неизменяемость.
Существует множество всевозможных соединений антигенов. Наиболее распространённой системами считают АВ0. Дополнительным антигеном, обычно называют Rh.
Из этих антигенов образуются: 1, 2, 3 и 4 группы крови. По-иному эти группы именуют так: 0, а, в и ав. Каждая из разновидностей имеет возможность быть резус-позитивной (Rh+) и резус-отрицательный (Rh-).
Наследование групп крови и резус-фактора приводит к появлению на мембране rbc ребёнка антигенов, идентичным маркерам родителей. В плазме присутствуют антитела, соответствующие антигенам эритроцитов.
Наследственность по группе
Установлено, что наследование группы крови происходит в соответствии с законами Менделя.
Закономерность наследования групп крови
Установлены закономерности по которым наследуются группы крови:
- Когда один родитель обладает первой (1) группой крови, малыш не может получить четвёртую, вне зависимости от группы другого родителя;
- Когда один родитель обладает четвёртой (4) группой крови, малыш не может получить первую, вне зависимости от группы другого родителя;
- Когда один родитель обладает первой группой, а другой второй, малышу достанется 0 или а;
- Когда один родитель обладает первой, а другой третьей (3) группой крови, малышу достанется 0 или в;
- Когда один родитель обладает второй (2) группой крови, а другой третьей, у малыша может быть любая;
- Когда оба родителя обладают а или в, не исключено рождения малыша с 0 группой;
- Когда оба родителя обладают ав, ребёнок может выбрать себе любую группу, кроме первой.
Наследованием управляет ген (единица наследования), состоящий из пары аллелей — по одному от каждого родителя.
Аллели гена обозначаются: 0, а, в. Из них а и в в являются доминантными(преобладающими), а 0 рецессивным (подчинённым, способным не проявиться у потомка).
Система АВО
Нетрудно вычислить самостоятельно, какую группу получит ребенок по системе АВ0. К примеру, мать обладает аа или а0, то есть, второй группой, у отца— вв или в0. Их потомство имеет полное право обладать любой группой из четырёх.
Еще пример: когда у матери первая, у нее 00 генотип. Если отец обладает генотипом ав. От матери поступит только 0, от отца, с равной вероятностью — а или в. Таким образом, возможны следующие варианты наследования группы крови у ребенка: а0 и в0. Дети, с равной вероятностью может иметь третью или вторую группу.
Наследование групп крови, таблица группы крови ребенка и родителей:
Группы родителей | Вероятная группа детей, % | |||
1 | 2 | 3 | 4 | |
1 и 1 | 100 | — | — | — |
1 и 2 | 50 | 50 | — | — |
1 и 3 | 25 | — | 75 | — |
1 и 4 | — | 50 | 50 | — |
2 и 2 | 25 | 75 | — | — |
2 и 3 | 25 | 50 | 25 | 25 |
2 и 4 | — | 25 | 25 | 50 |
3 и 3 | 25 | 75 | — | |
3 и 4 | — | 25 | 50 | 25 |
4 и 4 | — | 25 | 25 | 50 |
Система mn
Существуют не связанные с системой АВ0, антигены М и N. По одному из признаков ребенок получает от каждого родителя группу крови по наследству. Возможны следующие варианты: MM, MN, NN.
Установлено, что потомки могут получить антигены крови, имевшиеся у родителей. На таком основании в системе mn нуждается судебно-медицинская экспертиза, решающая вопросы определения отцовства, материнства, замены детей.
Наследственность Rh
Точная вероятность наследования Rh возможна только если оба родителя имеют Rh-. Если оба родителя имеют резус фактор, у потомства его может не обнаружиться. Парадокс объясняется тем, что позитивный резус передаётся геном, обладающим доминантной (d) и рецессивной (r) аллелью.
У резус-позитивных родителей возможны варианты наследования крови: dr и dd. Когда оба родителя имеют вариант dr, потомку передаются такие комбинации: dr, dd, rd и rr. Доминантная d не даст проявиться рецессивному r. Но, в варианте rr, ребёнок антигена резус не получит. Закон Менделя: распределение по типу 3:1.
Точное определение группы крови будущего ребёнка возможно, если оба родителя обладают 1 группой. Крови. Относительно фактора резус, результат можно прогнозировать со стопроцентной вероятностью тогда, когда оба родителя лишены этого антигена. Имея понятия о правилах наследования, можно заниматься прогнозированием группы крови будущего ребёнка.
Источник: sostavkrovi.ru